
Comparing Universes and Existential Ownership Types

Nicholas Cameron
Victoria University of Wellington
ncameron@ecs.vuw.ac.nz

Werner Dietl
ETH Zurich

Werner.Dietl@inf.ethz.ch

ABSTRACT
Ownership types and Universe types are two type systems
used to structure the heap and enforce encapsulation disci-
plines. The parametricity of ownership types allows a finer-
grained description of heap topologies, whereas the flexibil-
ity of any references in Universe types allows sharing be-
tween data structures. No direct encoding of one type sys-
tem in the other has been possible.

Parametric ownership has recently been extended with ex-
istential quantification of contexts. We formalise such a lan-
guage and give a formal translation between programs writ-
ten in this language and using Universe types. We show that
this translation is sound and complete.

1. INTRODUCTION
Parametric ownership types [13] and Universes [25, 17] are

two ownership type systems which describe an ownership
hierarchy and statically check that this hierarchy is main-
tained; that is, they include a descriptive part. How the
two systems describe this hierarchy is different. Both sys-
tems also provide (different) encapsulation properties based
on this hierarchy; a prescriptive part.

Ownership types can describe fine-grained heap topolo-
gies, whereas Universe types are more flexible and easier to
use. No direct encoding of one type system in the other has
been possible: the abstraction provided by any references in
Universes could not be modeled with parametric ownership
types.

Recently, parametric ownership has been extended with
existential quantification of contexts [8, 6]. This extension,
called Jo∃, provides the possibility to abstract from concrete
ownership information — similarly to any references in Uni-
verse types.

In this paper, we show that the descriptive parts of the
Universe type system [14] and a variant of Jo∃, which we call
Jo∃−, are equivalent (though note that full Jo∃ is more ex-
pressive than Universes). We formalise this correspondence
as encodings between the two systems. We have proved

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWACO ’09, July 6 2009, Genova, Italy
Copyright 2009 ACM 978-1-60558-546-8/09/07 ...$10.00.

that the encodings from Universes to Jo∃− and from Jo∃−
to Universes are sound; thus, we have shown that the two
systems are equivalent with respect to type checking. As
an intermediate step in the encoding we give an alternative
formalisation of Universes which is closer to the underlying
existential types model.

The outline of the rest of the paper is as follows. Sect. 2
gives a short summary of previous work on ownership type
systems. Sect. 3 presents our formalisation of the Universe
type system, and in Sect. 4 we present Jo∃− and explain how
it differs from Jo∃. In Sect. 5, we show a correspondence
between these two ownership systems. Finally, in Sect. 6 we
discuss our contributions and future work.

2. BACKGROUND — OWNERSHIP
Object ownership structures the heap hierarchically and

allows for the control of aliasing and access between objects.
Ownership has been successfully used in a variety of differ-
ent contexts; for example, for program verification [22, 25,
26, 24], architecture description [1], thread synchronization
[4, 20, 15], memory management [2, 5], and representation
independence [3].

There are many flavours of ownership. These systems have
in common the concept of an ownership topology, but differ
in how it is specified and enforced. Some common concepts
are shared by all (or most) systems: each object is owned
by at most one other object, called its owner ; the set of
all objects with the same owner is called a context ; objects
without an owner are located in a root context, the root of
the ownership tree.

Conceptually, ownership systems can be split into two
parts: an ownership topology and an encapsulation disci-
pline. The ownership topology describes the hierarchical
structure of the heap, whereas an encapsulation discipline
enforces aliasing and access restrictions. Most ownership
systems enforce a topology and an encapsulation discipline
at once. In this paper, we will only be concerned with the
descriptive aspect of ownership systems, that is, how the
ownership topology is enforced by the type system.

Parametric ownership types [27, 13, 11, 12] parameterise
classes and references with owner parameters. They enforce
the owner-as-dominator encapsulation discipline: all refer-
ence chains from the root context to an object in a different
context must go through that object’s owner. This restric-
tion of aliasing is of benefit in some applications of owner-
ship, for example, memory management, garbage collection,
and representation independence.

The Universe type system [25, 16] is an alternative own-

e ::= null | x | e.f | e.f = e | expressions
e.m(e) | new S

Q ::= class C ¢ D {S f; W} class declarations
W ::= S m(S x) {return e;} method declarations

us ::= rep | peer | any source Universe modifiers
u ::= us | lost | self Universe modifiers
S ::= us C source types
T, U ::= u C types

Γ ::= x:T variable environments

x, y, this variables
C, D classes
f field names
m method names

Figure 1: Universes: syntax.

ership type system aimed at modular formal verification of
object-oriented software [22, 26, 17]. It enforces the owner-
as-modifier encapsulation discipline: an object o may be
referenced by any other object, but reference chains that do
not pass through o’s owner must not be used to modify o.
This discipline allows objects to control state changes and
thereby enforce invariants of owned objects. A recent for-
malisation of the Universe type system [14] separates the
ownership topology from the owner-as-modifier encapsula-
tion discipline. We build on the topological system of this
formalisation.

Previous work has studied an encoding of different own-
ership type systems in dependent classes [18]. However, no
formal relationship between the different systems has been
shown.

3. UNIVERSE TYPE SYSTEM
In this section, we present a formalisation of the Universe

type system based on a previous formalisation [14]. It is a
Java-like object-oriented programming language with much
of the notation similar to Featherweight Java [19].

Fig. 1 presents the syntax of the programming language.
We support the usual expressions: the null literal, reading
variables x (which includes this), reading and updating the
value of a field, invoking a method, and creating a new ob-
ject. Class and method declarations are standard. We do
not specify method purity in method declarations because
we are only concerned with the topological system.

We distinguish between source Universe modifiers us and
(internal) Universe modifiers u and also between source types
S and (internal) types T. Source types appear in programs
and are limited to peer, rep, and any Universe modifiers.
These represent a reference to an object in the same con-
text, to an owned object, and to an object with an arbitrary
owner, respectively. The Universe modifiers self and lost

may appear in typing derivations. The modifier self is used
to denote a reference to the current object this; the modifier
lost is used to express that no concrete ownership informa-
tion (within the limits of the Universe modifier syntax) can
be given.

Fig. 2 presents the subtyping rules for Universes. We first
define an ordering relation on Universe modifiers. The self

`u self ≤ peer

(UO-Self)
`u peer ≤ lost

(UO-Peer)

`u rep ≤ lost

(UO-Rep)
`u lost ≤ any

(UO-Any)

`u u ≤ u

(UO-Reflex)

`u u1 ≤ u3 `u u3 ≤ u2

`u u1 ≤ u2

(UO-Trans)

class C ¢ D ...

`u u C <: u D

(US-Sub-Class)

`u u ≤ u′

`u u C <: u′ C

(US-Env)

`u T <: T
(US-Reflex)

`u T1 <: T3 `u T3 <: T2

`u T1 <: T2

(US-Trans)

Figure 2: Universes: ordering and subtyping.

u2

u1 ¤ u2 self peer rep any lost

self self peer rep any lost

peer lost peer lost any lost

u1 rep lost rep lost any lost

any lost lost lost any lost

lost lost lost lost any lost

Figure 3: Universes: viewpoint adaptation.

modifier is more concrete than peer (by UO-Self), both
peer and rep are below lost (UO-Peer and UO-Rep),
lost is below any (UO-Any), and the ordering is reflexive
(UO-Reflex) and transitive (UO-Trans).

Subtyping follows the subclassing relationship introduced
by the extends relation in the class declaration (US-Sub-
Class) and Universe modifier ordering (US-Env).

Fig. 3 presents viewpoint adaptation. u1 ¤ u2 adapts the
Universe modifier u2 from the point of view of u1 to the
current viewpoint this. For example, accessing a field de-
clared with a peer type through an expression that has a
rep type results in a rep¤ peer = rep type. We also adapt
a type from the point of view of a Universe modifier, writ-
ten as u1¤u2 C, which adapts the Universe modifier u2 from
the point of view of u1 to the current viewpoint this and
leaves the class C unchanged, i.e., u1 ¤ (u2 C) is defined to
be (u1 ¤ u2) C.

Lookup functions for methods and fields and the defini-
tions of well-formed types, environments, classes, and meth-
ods are straightforward and have been relegated to the ac-
companying technical report[7].

The expression typing rules are given in Fig. 4. The null

literal can receive an arbitrary well-formed source type (by
UT-Null)1. Object creation requires a well-formed type

1This is a slight modification from the formalisation in [14]

Γ `u x : Γ(x)
(UT-Var)

`u S ok

Γ `u null : S
(UT-Null)

`u u C ok
u ∈ {rep, peer}

Γ `u new u C : u C

(UT-New)

Γ `u e : u C

fType(f, C) = T

Γ `u e.f : u ¤ T

(UT-Field)

Γ `u e : u C fType(f, C) = T u ¤ T 6= lost D

Γ `u e′ : U `u U <: u ¤ T

Γ `u e.f = e′ : u ¤ T

(UT-Assign)

Γ `u e : u C mType(m, C) = T→T

Γ `u e : U `u U <: u ¤ T lost 6∈ u ¤ T

Γ `u e.m(e) : u ¤ T

(UT-Invk)

Figure 4: Universes: expression typing rules.

that uses the peer or rep Universe modifier (UT-New);
this ensures that objects can only be created in a statically
known context. As described earlier, the declared type of
a field T needs to be adapted to account for the type of
the receiver expression u C (UT-Field). Similarly, the type
of a field assignment (UT-Assign) is determined by view-
point adapting the declared field type. A field assignment is
forbidden if the viewpoint adaptation results in lost owner-
ship information. Finally, a method invocation (UT-Invk)
adapts the parameter and return types and ensures that no
ownership information in the parameters was lost.

3.1 An Alternate Formalisation of Universes
To prove the equivalence of Universes and Jo∃− we used

an intermediate language whose syntax is that of Universes,
but whose static semantics reflect Jo∃− more closely than
existing formalisations. In this alternate formalisation of
Universes, our aim is for subtyping to contain as much infor-
mation about a type’s behaviour as possible; in particular,
the premises which check for lost in the Universe type rules
should be avoided (since these premises effectively constrain
the set of supertypes which can be found for a type). To
avoid these premises, subtyping must be made more restric-
tive; happily, this change makes subtyping closer to that of
Jo∃−.

We believe that some aspects of this formalisation are
cleaner than the existing formalisation: similar premises are
not duplicated and the relation between types is encapsu-
lated within the subtype relation, rather than involving the
type rules. We show that the two versions of Universes are
equivalent in Sect. 5.

Fig. 5 presents subclassing and alternate Universe sub-
typing and Universe modifier ordering. Subclassing follows

where null could take any type (T as opposed to S). This
is a minor change and does not affect the formalism that
much. The only effect is that in assignments, null can-
not be assigned to fields where no object could be assigned.
We believe this is sensible; it reflects other formalisations of
Universe types [16].

`u C ¢ C

(USC-Reflex)

`u C1 ¢ C3 `u C3 ¢ C2

`u C1 ¢ C2

(USC-Trans)

class C ¢ D ...

`u C ¢ D

(USC-Sub-Class)

`u C ¢ D `u′ u ≤ u′

`u′ u C <: u′ D

(UAS-Env)

u 6= lost

`u′ u ≤ u

(UAO-
Reflex)

`u′ self ≤ peer

(UAO-Self-Peer)
`u′ u ≤ any

(UAO-Any)

Figure 5: Universes: subclassing and alternate sub-
typing and ordering.

directly from the class declarations written by the program-
mer.

Alternate Universe modifier ordering forbids lost as the
larger element. The ordering is only reflexive if the modifier
is not lost (UAO-Reflex). Otherwise it is the same as the
original Universe ordering: the self modifier is below peer

(UAO-Self-Peer) and all modifiers are below any (UAO-
Any).

Subtyping is given by UAS-Env and combines subclassing
with Universe ordering.

Fig. 6 presents our alternate expression typing rules. Rules
UAT-Var, UAT-Null, and UAT-New are unchanged from
their UT-... equivalents. UAT-Assign and UAT-Invk are
missing the check on lost since this is handled in the subtyp-
ing. All rules which look up and adapt a type use the close
function to ensure that lost does not appear in any type as-
signed to an expression. This does not affect type checking
because, under the alternate subtyping rules, an expression
with any type can be used in all the places a lost type could
and no more. The motivation for this change is simply that
it matches Jo∃− more closely.

However, note that we could not simply remove lost from
the formalisation, i.e., by substituting lost by any in the
viewpoint adaptation function (Fig. 3), without strengthen-
ing the type rules accordingly. Formalisations of the Uni-
verse type system without a lost modifier [17, 16] need
additional checks for field updates and method calls to en-
sure type soundness. For example, consider a field with
declared type peer Object that is accessed through an any

reference. The viewpoint adapted type is lost Object and
therefore an update is forbidden. If viewpoint adaptation
were to return any Object, we could use an arbitrary refer-
ence as right-hand side of the field update and break type
soundness. We follow [14] in using a separate lost modifier,
we can therefore identify safe updates and method calls by
viewpoint adaptation and thus use the simple type rules in
Fig. 6.

4. PARAMETRIC OWNERSHIP AND Jo∃
In parametric ownership systems [13], contexts are passed

around a program as parameters to types. These context
parameters describe parts of the heap topology in relative
terms. By allowing contexts other than an object’s owner
to be named within a class, disparate parts of the heap can

Γ `u′ x : Γ(x)
(UAT-Var)

`u S ok

Γ `u′ null : S
(UAT-Null)

`u u C ok
u ∈ {rep, peer}

Γ `u′ new u C : u C

(UAT-New)

Γ `u′ e : u C

fType(f, C) = T

Γ `u′ e.f : close(u ¤ T)
(UAT-Field)

Γ `u′ e : u C fType(f, C) = T

Γ `u′ e
′ : U `u′ U <: u ¤ T

Γ `u′ e.f = e′ : close(u ¤ T)
(UAT-Assign)

Γ `u′ e : u C mType(m, C) = T→T

Γ `u′ e : U `u′ U <: u ¤ T

Γ `u′ e.m(e) : close(u ¤ T)
(UAT-Invk)

close(u C) =

{
any C, if u = lost

u C, otherwise

Figure 6: Universes: alternative expression typing
rules.

be used together in one class.
Classes are parameterised by formal context parameters

and types by actual context parameters. The entities which
can be used as an actual context varies from system to sys-
tem, but include at least the current context, this, formal
context parameters, and the root context, world. For exam-
ple, a list can be declared as:

class List<owner, dOwner> {

Object<dOwner> datum;

List<owner, dOwner> next;

Object<this> pf;

}

The formal context owner represents the owner of instan-
tiations of the list class. The context dOwner is passed to the
definition (without affecting the ownership topology) and is
used as the owner of datum. The field pf is in the list’s
representation because it is owned by the list.

Ownership types are invariant with respect to their con-
text parameters. That is, Book<this> is not a subtype of
Book<world>, even though this is inside world. This invari-
ance preserves owners across subtyping and is used to show
soundness and enforce encapsulation properties.

4.1 Existential Quantification and Jo∃
In Java, existential types in the form of wildcards [28, 9]

are used to implement subtype variance. Similarly, existen-
tial quantification of contexts can be used to give subtype
variance in an ownership language [8].

Existential quantification has also been used to abstract
contexts in ownership languages [11, 21]; and to support
downcasting without storing runtime ownership information
[29]. Wherever some form of variance is present in an own-

e ::= null | x | e.f | e.f = e | expressions
e.m(e) | new C<a>

Q ::= class C<owner> ¢ N {T f; W} class declarations
W ::= T m(T x) {return e;} method declarations

N ::= C<a> class types
T, U ::= ∃o.N types
a ::= o | this contexts

Γ ::= x:T variable environments

o, owner formal owners
C, D classes
f field names
m method names

Figure 7: Jo∃−: syntax.

ership language [23, 10, 24, 14], the mechanisms for imple-
menting it resemble implicit existential types [6].

As example of context quantification, in Jo∃, a list with
an unknown owner (and contents in the root context) can be
represented as ∃o.List<o, world>2 and is a supertype of a
list owned by any particular context (e.g., List<this, world>).

In this paper, we will develop a variation of Jo∃ which we
call Jo∃−. Our variation is mostly a subset of Jo∃, which
mirrors the expressivity of Universe types and is much less
expressive than Jo∃. It is simplified by removing type pa-
rameters, bounds on formal contexts, variables as contexts,
parametric methods, and multiple context parameters. It
does, however, support subclassing, which Jo∃ does not, and
implicitly packs and unpacks existential types.

We give the syntax for Jo∃− in Fig. 7. The syntax of
expressions is similar to Universes, only object creation is
changed, where an owner must be supplied. Class decla-
rations must come with a single context parameter — the
owner of instantiations of the class. There is no distinction
between source types and internal types in Jo∃−. Types are
existentially quantified class types parameterised by a sin-
gle context3. An existential type may be quantified by the
empty set, which is analogous to an unquantified type. For

convenience, we use ∃o.T for ∃o, o′.N where T = ∃o′.N.
We give subtyping in Fig. 8. This follows subclassing

and existential subtyping; the latter is given by ∃S-Env
and follows Tame FJ [9] and other models for Java wild-
cards. In Jo∃−, ∃S-Env allows subtyping between concrete
and existential types (e.g., `∃ C<this> <: ∃o.C<o>) and be-
tween equivalent existential types (e.g., `∃ ∃o1,o2.C<o1> <:
∃o1.C<o1> and `∃ ∃o1.C<o1> <: ∃o1,o2.C<o1>).

We give rules for well-formed types and contexts in Fig. 9.
A type is well-formed if the class part is declared in the
program and the context parameter is well-formed (taking
into account any quantification). Well-formed contexts may
only be quantified contexts, this, and the owner for the
current class, because these are the only contexts put into

2Quantified contexts in Jo∃ should be bounded, we omit
bounds here for clarity.
3Since types are only parameterised by a single context, at
most one formal context in a quantifying environment will be
relevant; however, the formalisation is more straightforward
if we allow quantification by multiple formal contexts.

class C<o> ¢ D<o> ...

`∃ ∃o.C<a> <: ∃o.D<a>
(∃S-Sub-Class)

o′ ∩ fv(∃o.N) = ∅
fv(a) ⊆ fv(∃o.N) ∪ o′

`∃ ∃o′.[a/o]N <: ∃o.N
(∃S-Env)

`∃ T <: T
(∃S-Reflex)

`∃ T1 <: T3

`∃ T3 <: T2

`∃ T1 <: T2

(∃S-Trans)

Figure 8: Jo∃−: subtyping.

o ∈ o

o; Γ `∃ o ok
(∃F-Context)

x ∈ dom(Γ)

o; Γ `∃ x ok
(∃F-Var)

class C<o>...

o; Γ `∃ a ok

o; Γ `∃ C<a> ok
(∃F-Class)

o, o′; Γ `∃ N ok

o; Γ `∃ ∃o′.N ok
(∃F-Exist)

Figure 9: Jo∃−: well-formed contexts and types.

the environments in ∃T-Class [7]. We keep the rules general
for simplicity and to stay close to Jo∃.

We give rules to type check expressions in Fig. 10; they
are mostly standard. The two interesting innovations con-
cern existential unpacking and packing (which is done im-
plicitly, that is, without expressions, in contrast to Jo∃),
and using the sv function to assist in the handling of rep-

resentation exposure. The type of the receiver (∃o′.N) in
method calls, field accesses, and assignments is unpacked by
using N without quantification for type lookups. The quan-

tifying variables (o′) are used to quantify the assigned type
(existential packing) in the conclusion of the rules.

The sv function is used to ensure that expressions are not
substituted into types. The context this may appear in the
declared types of fields and methods; during type checking,
this must be substituted away. If the receiver in the ex-
pression being typed is a context (i.e., this in Jo∃−), then
it may be used4, otherwise we use a fresh context variable,
which is then quantified in the assigned type of the expres-
sion. For example, in the list class defined at the start of
this section, pf is declared with type Object<this>; if this
has type List<o>, we can assign the type Object<this> to
this.pf as we can do the substitution this/this. In check-
ing x.pf (assuming x has type List<o>), we cannot do the
substitution x/this because x is not a context in Jo∃−. In-
stead we substitute the fresh context o′, giving Object<o′>;
we can then assign the type ∃o.Object<o> to x.pf which
prevents o′ becoming free.

This is a novel use of existential quantification and avoids
us being unable to type expressions where the receiver is not
a context. It is safe because the fresh context variable intro-
duced cannot be matched to any other context by subtyping.

4In Jo∃, receivers must always be contexts so the problem
is avoided.

o; Γ `∃ x : Γ(x)
(∃T-Var)

o; Γ `∃ T ok

o; Γ `∃ null : T
(∃T-Null)

o; Γ `∃ C<a> ok

o; Γ `∃ new C<a> : C<a>
(∃T-New)

o; Γ `∃ e : ∃o′.N
fType(f, N) = T

o; Γ `∃ e.f : ∃o′,o′′.[sv
o′′(e)/this]T

(∃T-Field)

o; Γ `∃ e : ∃o′.N fType(f, N) = T

o; Γ `∃ e′ : T′

`∃ T′ <: [sv
o′(e)/this]T

o; Γ `∃ e.f = e′ : ∃o′,o′′.[sv
o′′(e)/this]T

(∃T-Assign)

o; Γ `∃ e : ∃o′.N
mType(m, N) = T→T o; Γ `∃ e : U

`∃ U <: [sv
o′(e)/this]T

o; Γ `∃ e.m(e) : ∃o′,o′′.[sv
o′′(e)/this]T

(∃T-Invk)

sv(this)∅ = this

e 6= this

sv(e){o} = o

Figure 10: Jo∃−: expression typing rules.

Therefore objects which are in another objects’ representa-
tion can only be typed (and therefore referenced) abstractly
5.

We relegate method and field lookup functions and rules
for type checking methods and classes to the accompanying
technical report[7].

5. ENCODING UNIVERSES IN Jo∃−
There is a relatively straightforward mapping from Uni-

verse types to Jo∃− types. We define the translation of the
Universe type T as JTKo. Since the translation function is not
one-to-one, it has no inverse. Therefore, we must seperately
define a translation from Jo∃− types to Universe types. We
define the translation of a Jo∃− type T as JTK←o . In both
cases, o is a sequence of free context variables in the Jo∃−
type. Both functions are defined in Fig. 11.

Both peer and self annotations denote objects in the
same context in the ownership hierarchy (that of the cur-
rent object’s owner); therefore, they are encoded in Jo∃−
with the same types. The self annotation includes extra

5Note that o′ and o′′ are unrelated. The assigned types
are packed with respect to both sets of context variables,

but they have different sources: o′ are unpacked from the

type of the receiver, o′′ are a result of substituting generated
variables into the field or method type.

Jany CK∅ = ∃o.C<o> Jpeer CK∅ = ∃∅.C<owner>

Jrep CK∅ = ∃∅.C<this> Jself CK∅ = ∃∅.C<owner>

Jlost CK{o} = ∃∅.C<o> Jnew TK∅ = new JTK∅

o ∈ o

J∃o.C<o>K←∅ = any C

owner 6∈ o

J∃o.C<owner>K←∅ = peer C

J∃o.C<this>K←∅ = rep C

o 6= owner o 6∈ o

J∃o.C<o>K←{o} = lost C Jnew TK←∅ = new JTK←∅

Figure 11: Translation from Universes to Jo∃− and
Jo∃− to Universes.

information: a variable with this annotation can only con-
tain the current object, this. In Jo∃−, this information is
not stored in the types, but is used directly in the type rules,
specifically in the function sv 6.

The difference between any and lost also becomes clear
from the encoding: any is encoded as an existential type, in-
tuitively the type represents an object owned by an unknown
owner (the type system doesn’t care about the owner); lost
is encoded with a free owner variable, which means the
owner is unknown, but some specific owner (the type system
doens’t know about the owner).

The translations are easily extended to expressions; object
creation is the only expression that includes a type and so
is the only expression that requires translation (also given
in Fig. 11). All types for fields and methods in class bodies
must be translated. Class declarations are translated from
Universes by adding an owner parameter to the declared
class and its superclass. Translating to a Universes program
simply removes these context parameters. We also extend
the translations of types to the translations of variable en-
vironments (Γ) in the obvious way.

5.1 Example
Consider the program P1 using Universe types in Fig. 12

and the program P2 using Jo∃− types in Fig. 13. These two
programs are equivalent, that is, JP1K∅ = P2 and JP2K←∅ = P1.
Both describe the same topology and type checking in both

6Alternatively, we could modify the Universes system to re-
move the special treatment of this expressions and thus
remove the need for the self annotation, or add a self an-
notation to Jo∃−. However, as the aim of this work is to
demonstrate the connection between Universes and owner-
ship using standard type-theoretic features, neither situa-
tion is ideal: the first muddies the definition of Universes,
the second adds a non-standard element.

class C {

peer Object f1;

any Object f2;

void m(any C x) {

this.f1 = new peer Object(); //1: OK

x.f1 = new peer Object(); //2: error

x.f2 = new peer Object(); //3: OK

}

}

Figure 12: Universes example program P1.

class C<owner> {

Object<owner> f1;

∃o. Object<o> f2;

void m(∃o. C<o> x) {

this.f1 = new Object<owner>(); //1: OK

x.f1 = new Object<owner>(); //2: error

x.f2 = new Object<owner>(); //3: OK

}

}

Figure 13: Jo∃− example program P2.

systems rejects expression 2.
In P1 the field update x.f1 in expression 2 is forbidden,

as the viewpoint adaptation any ¤ peer Object results in
lost Object and lost is forbidden in the adapted field type.
On the other hand, the field update x.f2 in expression 3 is
allowed, as any¤ any Object results in any Object and the
right-hand side is a correct subtype.

In expression 2 of P2, the type of x must be unpacked
before it can be used. Therefore, the field type lookup
fType(f1, C<o1>) is performed, where o1 is a fresh context
variable. This lookup gives the type Object<o1>. There is
no subtype relationship between Object<owner> and
Object<o1> because their parameters do not match and sub-
typing of unquantified types is invariant.

In expression 3, the lookup fType(f2, C<o1>) results in
∃o.Object<o>, which is a supertype of Object<owner>, be-
cause of the variance of existential types, and the assignment
is allowed.

5.2 Properties of the Encoding
We wish to state that the Universes and Jo∃− type sys-

tems are equivalent; i.e., an expression will type check in one
if and only if it type checks in the other. Formally,

Theorem — Equivalence of Universes and
Jo∃−: For all e , Γ holds: there exists T such
that Γ `u e : T if and only if there exists T′ such
that owner; JΓK∅ `∃ JeK∅ : T′

We use our alternate type system for Universes (described
in Sect. 3.1) as an intermediate step between the two Jo∃−
and Universes. We have proved the following lemma:

Lemma — Correspondence of Universes
and our Alternate Formalisation of Uni-

verses: For all e, T, Γ holds: Γ `u e : T if and
only if Γ `u′ e : close(T).

The fact that we assign a different type to e in the two
systems is not important because in the main theorem, we
do not claim a correspondence between T and T′7.

The above lemma requires the following lemma concerning
subtyping in the two systems:

Lemma — Correspondence of Universes
Subtyping and Subtyping in our Alternate
Formalisation of Universes: For all T, T′ holds:
`u T <: T′ and T′ 6= lost _ if and only if `u′ T <:
T′.

Proving this lemma requires the use of transitivity-free
subtyping for Universes, given in the accompanying techni-
cal report[7].

In order to prove the final stage of the equivalence, that
alternate Universe subtyping corresponds with Jo∃− sub-
typing, we require that subtyping in these two systems cor-
responds. This lemma requires the use of transitivity-free
subtyping for Jo∃−, also in [7]. Due to the non-invertability
of the translation, we must state this lemma in two parts:

Lemma — Correspondence of Subtyping
in our Alternate Formalisation of Universes
and Jo∃− Subtyping, a: For all T, T′, if `u′

T <: T′ then `∃ JTKo <: JT′K∅.
Lemma — Correspondence of Subtyping
in our Alternate Formalisation of Universes
and Jo∃− Subtyping, b: For all T, T′, if `∃
T <: T′ then `u′ JTK←o <: JT′K←∅ .

In these lemmas, we only allow free context variables in
the subtype (T, not T′); this is indicated by the subscript free
variable lists of the translation functions. This corresponds
to subtyping in our alternate Universes formalisation, where
lost (which indicates a free variable) can never appear on
the right-hand side of a subtype relation.

Likewise, the correspondence between typing expressions
in the two languages must be stated in two parts:

Lemma — Correspondence of our Alter-
nate Formalisation of Universes and Jo∃−,
a: For all e, T, Γ, if Γ `u′ e : T then owner; JΓK∅ `∃
JeK∅ : JTK∅.
Lemma — Correspondence of our Alter-
nate Formalisation of Universes and Jo∃−,
b: For all e, T, Γ, if owner; Γ `∃ e : T then
JΓK←∅ `u′ JeK←∅ : JTK←∅ .

In these lemmas, the translation function may not create
free variables, indicated by the subscript ∅. This means
we do not attempt to show a correspondence where there
are free variables in the Jo∃− types; this is a basic well-
formedness property of the types.

In summary, we have proved that:

Lemma — Correspondence of Universes
and Jo∃−, a: For all e, T, Γ, if Γ `u e : T

then owner; JΓK∅ `∃ JeK∅ : Jclose(T)K∅.
7In fact such a correspondence exists, based on close.

Lemma — Correspondence of Universes
and Jo∃−, b: For all e, T, Γ, if owner; Γ `∃ e : T
then JΓK←∅ `u JeK←∅ : U where close(U) = JTK←∅ .

Both these results follow from the above lemmas, and to-
gether give the main result of this section.

Full proofs can be downloaded from: http://www.doc.ic.ac.uk/
˜ncameron/papers/cameron iwaco09 proofs.pdf

6. CONCLUSION
We have formalised an encoding from Universe types to

parametric ownership types with existential quantification.
We have also defined the reverse encoding, and shown that
both are sound. Up to the non-invertability of the encodings,
this also gives completeness for both encodings. Essentially,
we have shown that both systems describe the same heap
topologies. This follows from the equivalences of types and
type checking.

We have expanded the understanding of the two systems’
relationship and shown exactly what the Universe modifiers
mean in terms of the more fundamental type theoretic tools
of parameterisation and quantification.

In practical terms, the two systems have different advan-
tages and potential markets. Universe annotations are much
simpler than parametric ownership types, and are much
more usable by programmers; therefore, they are more likely
to be adopted in a real language. Contrariwise, parametric
ownership types are more expressive and can describe the
ownership hierarchy in greater detail; therefore, they are
more useful for specifying internal representations of pro-
grams, or in applications where the payoff from using own-
ership justifies the higher annotation overhead. In addition,
the systems enforce different encapsulation properties with
different target applications.

Future Work.
We would like to directly prove Jo∃− sound, even though

this is a very simple variation of the proof for Jo∃. We would
like to extend our encoding to cover type parameters, since
both systems can include this feature [16, 8].

We are investigating the structure of the heap in both
systems by examining their operational semantics. Our aim
is to prove that the heap topologies given by both systems
are identical. Although this follows from our results and
each system’s soundness results, it would be interesting to
formalise and prove these properties directly.

We are applying the insight gained from this work to de-
velop a hybrid language which allows a mix-and-match com-
bination of simple Universe annotations and parametric and
path-dependent ownership types for more fine-grained spec-
ifications. This will allow programmers to easily choose the
simplest and most concise specification for a particular own-
ership relation.

Finally, we are investigating the relationship between the
encapsulation properties of these and other ownership sys-
tems.

Acknowledgements.
We would like to thank the anonymous reviewers for their

useful comments. The first author’s work was funded in part
by a Build IT Postdoctoral fellowship.

7. REFERENCES
[1] Jonathan Aldrich. Using types to enforce architectural

structure. PhD thesis, University of Washington, 2003.

[2] Chris Andreae, Yvonne Coady, Celina Gibbs, James
Noble, Jan Vitek, and Tian Zhao. Scoped types and
aspects for real-time systems. In European Conference
on Object Oriented Programming (ECOOP), 2006.

[3] Anindya Banerjee and David Naumann. Ownership
confinement ensures representation independence for
object-oriented programs. JACM: Journal of the
ACM, 2005.

[4] Chandrasekhar Boyapati, Robert Lee, and Martin C.
Rinard. Ownership Types for Safe Programming:
Preventing Data Races and Deadlocks. In
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2002.

[5] Chandrasekhar Boyapati, Alexandru Salcianu,
William S. Beebee, and Martin C. Rinard. Ownership
types for safe region-based memory management in
real-time java. In Programming Language Design and
Implementation (PLDI), 2003.

[6] Nicholas Cameron. Existential Types for Variance —
Java Wildcards and Ownership Types. PhD thesis,
Imperial College London, 2009.

[7] Nicholas Cameron and Werner Dietl. Comparing
Universes and Existential Ownership Types. Technical
Report 06, School of Engineering and Computer
Science, VUW, 2009.
https://ecs.victoria.ac.nz/twiki/pub/Main/
TechnicalReportSeries/ECSTR09-06.pdf.

[8] Nicholas Cameron and Sophia Drossopoulou.
Existential Quantification for Variant Ownership. In
European Symposium on Programming Languages and
Systems (ESOP), 2009.

[9] Nicholas Cameron, Sophia Drossopoulou, and Erik
Ernst. A Model for Java with Wildcards. In European
Conference on Object Oriented Programming
(ECOOP), 2008.

[10] Nicholas Cameron, Sophia Drossopoulou, James
Noble, and Matthew Smith. Multiple Ownership. In
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2007.

[11] David G. Clarke. Object Ownership and Containment.
PhD thesis, School of Computer Science and
Engineering, The University of New South Wales,
Sydney, Australia, 2001.

[12] David G. Clarke and Sophia Drossopoulou.
Ownership, Encapsulation and the Disjointness of
Type and Effect. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
2002.

[13] David G. Clarke, John M. Potter, and James Noble.
Ownership Types for Flexible Alias Protection. In
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 1998.

[14] David Cunningham, Werner Dietl, Sophia
Drossopoulou, Adrian Francalanza, Peter Müller, and
Alexander J. Summers. Universe Types for Topology
and Encapsulation. In Formal Methods for
Components and Objects (FMCO), 2008.

[15] David Cunningham, Sophia Drossopoulou, and Susan
Eisenbach. Universe Types for Race Safety. In

Verification and Analysis of Multi-threaded Java-like
Programs (VAMP), 2007.

[16] Werner Dietl, Sophia Drossopoulou, and Peter Müller.
Generic Universe Types. In European Conference on
Object Oriented Programming (ECOOP), 2007.

[17] Werner Dietl and Peter Müller. Universes:
Lightweight Ownership for JML. Journal of Object
Technology, 4(8):5–32, 2005.

[18] Werner Dietl and Peter Müller. Ownership type
systems and dependent classes. In Foundations of
Object-Oriented Languages (FOOL), 2008.

[19] Atsushi Igarashi, Benjamin C. Pierce, and Philip
Wadler. Featherweight Java: a Minimal Core Calculus
For Java and GJ. ACM Trans. Program. Lang. Syst.,
23(3):396–450, 2001. An earlier version of this work
appeared at OOPSLA’99.

[20] Bart Jacobs, Frank Piessens, K. Rustan M. Leino, and
Wolfram Schulte. Safe concurrency for aggregate
objects with invariants. In Software Engineering and
Formal Methods (SEFM), 2005.

[21] Neel Krishnaswami and Jonathan Aldrich.
Permission-Based Ownership: Encapsulating State in
Higher-Order Typed Languages. In Programming
Language Design and Implementation (PLDI), 2005.

[22] K. Rustan M. Leino and Peter Müller. Object
invariants in dynamic contexts. In European
Conference on Object-Oriented Programming
(ECOOP), 2004.

[23] Yi Lu and John Potter. On Ownership and
Accessibility. In European Conference on Object
Oriented Programming (ECOOP), 2006.

[24] Yi Lu and John Potter. Protecting Representation
with Effect Encapsulation. In Principles of
Programming Languages (POPL), 2006.

[25] Peter Müller. Modular Specification and Verification of
Object-Oriented Programs, volume 2262 of Lecture
Notes in Computer Science. Springer-Verlag, 2002.

[26] Peter Müller, Arnd Poetzsch-Heffter, and Gary T.
Leavens. Modular Invariants for Layered Object
Structures. Science of Computer Programming,
62(3):253–286, October 2006.

[27] James Noble, Jan Vitek, and John Potter. Flexible
Alias Protection. In European Conference on Object
Oriented Programming (ECOOP), 1998.

[28] Mads Torgersen, Christian Plesner Hansen, Erik
Ernst, Peter von der Ahé, Gilad Bracha, and Neal
Gafter. Adding Wildcards to the Java Programming
Language. Journal of Object Technology, 3(11):97–116,
2004. Special issue: OOPS track at SAC 2004,
Nicosia/Cyprus.

[29] Tobias Wrigstad and David G. Clarke. Existential
Owners for Ownership Types. Journal of Object
Technology, 6(4), 2007.

